Math 434 Assignment 5

Due May 24

Assignments will be collected in class.

1. Let λ be a limit ordinal, and for each $\alpha < \lambda$, let X_{α} be a set with $X_{\alpha} \subseteq X_{\beta}$ when $\alpha < \beta$. Let $X_{\lambda} = \bigcup_{\alpha < \lambda} X_{\alpha}$.

Suppose that each X_{α} is well-ordered by \leq_{α} , and suppose that

- (a) If $\alpha < \beta$, then \leq_{β} extends \leq_{α} .
- (b) If $\alpha < \beta$, $x \in X_{\alpha}$, and $y \in X_{\beta} X_{\alpha}$, then $x <_{\beta} y$.

Prove that X_{λ} is well-ordered by setting $x \leq_{\lambda} y$ if and only if there is $\alpha < \lambda$ with $x \leq_{\alpha} y$.

- 2. The Σ_1 formulas are defined by:
 - if φ is Δ_0 , then φ is Σ_1 ;
 - if $\varphi(x)$ is Σ_1 , then $\exists x \varphi(x)$ is Σ_1 ;
 - if $\varphi(x)$ is Σ_1 , then $\exists x \in y \ \varphi(x)$ and $\forall x \in y \ \varphi(x)$ are Σ_1 .

Similarly, the Π_1 formulas are defined by:

- if φ is Δ_0 , then φ is Π_1 ;
- if $\varphi(x)$ is Π_1 , then $\forall x \varphi(x)$ is Π_1 ;
- $\varphi(x)$ is Π_1 , then $\exists x \in y \ \varphi(x)$ and $\forall x \in y \ \varphi(x)$ are Π_1 .

(a) Let $M \models ZF$ be a transitive model of set theory. Given a set a, prove that

$$M \vDash (\forall x \in y) \exists z \varphi(x, z)$$

if and only if

$$M \vDash \exists u \; (\forall x \in y) (\exists z \in u) \; \varphi(x, z)$$

Hint: Use the Axiom Schema of Collection, which say that if for all $x \in A$ there exists a y with $\varphi(x, y)$, then there exists a set B such that for all $x \in A$ there is a $y \in B$ with $\varphi(x, y)$. This is a consequence of ZF.

Let $M \subseteq N$ be transitive models of ZF, $\varphi(\bar{x})$ a formula, and $\bar{a} \in M$. Prove:

- (b) If $\varphi(\bar{x})$ is a Σ_1 formula, then $M \models \varphi(\bar{a})$ implies that $N \models \varphi(\bar{a})$.
- (c) If $\varphi(\bar{x})$ is a Π_1 formula, then $N \vDash \varphi(\bar{a})$ implies that $M \vDash \varphi(\bar{a})$.
- 3. For this question, work in ZFC+GCH. So for any cardinal κ , $|\mathcal{P}(\kappa)| = 2^{\kappa} = \kappa^+$, the least cardinal greater than κ . Let κ, μ be two infinite cardinals.
 - (a) Prove that $\kappa^{\kappa} = \kappa^+$.
 - (b) Prove that if $\mu^+ \ge \kappa$, then $\kappa^{\mu} = \mu^+$.
 - (c) Prove that if μ⁺ < κ and μ ≥ cof(κ), then κ^μ = κ⁺. Hint: κ must be singular and hence a limit cardinal (the proof of this fact might give you some inspiration). So if λ < κ, then λ⁺ < κ. Also, a function κ → 2 is determined by its restriction to each λ < κ.

Now assume that $\mu^+ < \kappa$ and $\mu < cof(\kappa)$. Then $\kappa > \aleph_0$, so either $\kappa = \lambda^+$ for some infinite cardinal λ , or κ is a limit cardinal.

- (d) Prove that if κ is a successor cardinal, then $\kappa^{\mu} = \kappa$.
- (e) Suppose that κ is a limit cardinal. Given a function $f: \mu \to \kappa$, recall that since $\mu < cof(\kappa)$, there is an infinite cardinal $\lambda < \kappa$ such that $ran(f) \subseteq \lambda$. Prove that $\kappa^{\mu} = \sup_{\lambda < \kappa} \lambda^{\mu}$, so that $\kappa^{\mu} = \kappa$.

We have shown that, assuming GCH,

$$\kappa^{\mu} = \begin{cases} \kappa & \text{if } \mu^{+} < \kappa \text{ and } \mu < cof(\kappa) \\ \kappa^{+} & \text{if } \mu^{+} < \kappa \text{ and } \mu \ge cof(\kappa) \\ \mu^{+} & \text{if } \mu^{+} \ge \kappa \end{cases}$$

- 4. Let X be a set. Prove that there is $Y \in \mathcal{P}(X) \mathcal{P}_{def}(X)$.
- 5. Let Γ be a finite subset of ZFC. Prove that $ZFC \vdash Con(\Gamma)$. Conclude that ZFC is not finitely axiomatizable.